Near-Resonant Steady Mode Interaction: Periodic, Quasi-periodic, and Localized Patterns
نویسندگان
چکیده
منابع مشابه
Near-Resonant Steady Mode Interaction: Periodic, Quasi-periodic, and Localized Patterns
Motivated by the rich variety of complex periodic and quasi-periodic patterns found in systems such as two-frequency forced Faraday waves, we study the interaction of two spatially periodic modes that are nearly resonant. Within the framework of two coupled one-dimensional Ginzburg-Landau equations we investigate analytically the stability of the periodic solutions to general perturbations, inc...
متن کاملQuasi-periodic stability of normally resonant tori
We study quasi-periodic tori under a normal-internal resonance, possibly with multiple eigenvalues. Two non-degeneracy conditions play a role. The first of these generalizes invertibility of the Floquet matrix and prevents drift of the lower dimensional torus. The second condition involves a Kolmogorovlike variation of the internal frequencies and simultaneously versality of the Floquet matrix ...
متن کاملForced Periodic and Quasi-Periodic Patterns in Anisotropic Systems
We investigate pattern formation in two-dimensional anisotropic systems under an external spatially periodic modulation force. Electrohydrodynamic convection or RayleighB6nard convection of nematic liquid crystals are typical examples of anisotropic pattern forming systems. We are especially interested in the situation where the wave vector of the convection rolls and the wave vector of the ext...
متن کاملResonant transmission near nonrobust periodic slab modes.
We present a precise theoretical explanation and prediction of certain resonant peaks and dips in the electromagnetic transmission coefficient of periodically structured slabs in the presence of nonrobust guided slab modes. We also derive the leading asymptotic behavior of the related phenomenon of resonant enhancement near the guided mode. The theory applies to structures in which losses are n...
متن کاملEquilibrium Quasi-periodic Configurations with Resonant Frequencies in Quasi-periodic Media Ii: Kam Theory
We develop an a-posteriori KAM theory for the equilibrium equations for quasi-periodic solutions in a quasi-periodic Frenkel-Kontorova model when the frequency of the solutions resonates with the frequencies of the substratum. The KAM theory we develop is very different both in the methods and in the conclusions from the more customary KAM theory for Hamiltonian systems or from the KAM theory i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Applied Dynamical Systems
سال: 2004
ISSN: 1536-0040
DOI: 10.1137/030600552